27 July,2022 01:43 PM IST | Mumbai | ANI
Representational images. Pic/iStock
Researchers have discovered a gene that enhances muscular strength when activated by physical activity, opening the door to the creation of therapeutic therapies that mirror some of the advantages of exercise. The findings of the research were published in the journal 'Cell Metabolism'.
The study showed how different types of exercise change the molecules in our muscles, resulting in the discovery of the new C18ORF25 gene that is activated with all types of exercise and responsible for promoting muscle strength. Animals without C18ORF25 have poor exercise performance and weaker muscles.
Project lead Dr Benjamin Parker said by activating the C18ORF25 gene, the research team could see muscles become much stronger, without them becoming necessarily bigger.
"Identifying this gene may impact how we manage healthy aging, diseases of muscle atrophy, sports science, and even livestock and meat production. This is because promoting optimal muscle function is one of the best predictors of overall health," Dr Parker said.
ALSO READ
Celebrating the guilty pleasures of TV
‘If people find jokes at comedy shows offensive, they shouldn’t even come'
Badrinath pilgrimage: 1.5 tonnes of waste cleared in massive post-season cleanup
Grooming experts share a guide with tips on how to sport the look with style
Google launches new AI feature to tackle air pollution in India
"We know exercise can prevent and treat chronic diseases including diabetes, cardiovascular disease, and many cancers. Now, we hope that by better understanding how different types of exercise elicit these health-promoting effects at the molecular level, the field can work towards making new and improved treatment options available."
In the study, a collaboration between Dr Parker and Professors Erik Richter and Bente Kiens of the University of Copenhagen, Denmark, the team was able to identify the molecular similarities and differences between different types of exercise in human muscle biopsies by analyzing proteins and how they change within cells.
"To identify how genes and proteins are activated during and after different exercises, we performed an analysis of human skeletal muscle from a cross-over intervention of endurance, sprint, and resistance exercise," Dr Parker said.
The experimental design allowed researchers to compare signaling responses between the exercise modalities in the same individual, relative to their pre-exercise level. This meant they could monitor how an individual responded to different types of exercise directly in their muscles.
Importantly, it also allowed the study team to identify genes and proteins that consistently change across all individuals and all types of exercise, leading to the discovery of the new gene.
Also read: Mr Muscle has a problem
This story has been sourced from a third party syndicated feed, agencies. Mid-day accepts no responsibility or liability for its dependability, trustworthiness, reliability and data of the text. Mid-day management/mid-day.com reserves the sole right to alter, delete or remove (without notice) the content in its absolute discretion for any reason whatsoever