31 July,2024 04:52 PM IST | Mumbai | IANS
Image for representational purposes only. Photo Courtesy: iStock
In a major advancement for tackling antibiotic resistance, researchers at The University of Texas at Austin have developed a promising new antibiotic using artificial intelligence.
The research, published in Nature Biomedical Engineering, marks a significant step forward in creating safer and more effective treatments.
The research team employed a large language model (LLM), similar to the technology behind ChatGPT, to re-engineer Protegrin-1. This potent antibiotic, naturally produced by pigs, was effective in killing bacteria but was previously too toxic for human use.
By modifying Protegrin-1, the researchers aimed to preserve its antibacterial properties while eliminating its harmful effects on human cells.
ALSO READ
Which exercises are effective for people with COPD?
Air pollution behind surging lung cancer in non-smokers in India: Experts
Mumbai: Doctors save 69-year-old Vasaikar’s life with high-risk heart surgery
Odisha: Doctors save life of Army jawan whose heart stopped beating for 1.5 hrs
Struggle to keep morning routines? Listen to this podcast and laugh about it
To achieve this, the team generated over 7,000 variations of Protegrin-1 through a high-throughput method, allowing them to quickly identify which modifications could enhance safety. They then used the LLM to evaluate these variations for their ability to selectively target bacterial membranes, effectively kill bacteria, and avoid harming human red blood cells. This AI-guided approach led to the creation of a refined version known as bacterially selective Protegrin-1.2 (bsPG-1.2).
In preliminary animal trials, mice treated with bsPG-1.2 and infected with multidrug-resistant bacteria showed a significant reduction in bacterial levels in their organs within six hours. These promising results suggest that bsPG-1.2 could potentially advance to human trials.
Claus Wilke, a professor of integrative biology and co-senior author of the study, highlighted the transformative impact of AI on drug development.
"Large language models are revolutionising protein and peptide engineering, making it possible to develop new drugs and improve existing ones more efficiently. This technology not only identifies potential new treatments but also speeds up their path to clinical application," Wilke said.
The breakthrough underscores how AI is being harnessed to address critical health challenges.
Also read: How AI algorithms inform box office trends, film production and talent casting
This story has been sourced from a third party syndicated feed, agencies. Mid-day accepts no responsibility or liability for its dependability, trustworthiness, reliability and data of the text. Mid-day management/mid-day.com reserves the sole right to alter, delete or remove (without notice) the content in its absolute discretion for any reason whatsoever